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Abstract The development of software tools and techniques for the efficient ac-

cess and analysis of large astronomical databases poses some unique

challenges. We briefly describe some of the problems astronomical data

and datasets present and give an example from our own efforts to auto-

mate the classification of galaxies, and then discuss where ”clustering”

algorithms may be applicable.
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Introduction

The number of space-based all-sky surveys ranging from gamma rays
and X-rays to the far infrared and millimeter wavelengths plus the sup-
porting digitization programs from the optical photographic sky surveys
(POSS I and II and the UK-SRC) is rapidly increasing. When we add
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in the new groundbased digital surveys, like 2MASS and DENIS in the
near-infrared and the optical Sloan Digital Sky Survey (SDSS) a ≥40
TB-sized Internet-wide multi-wavelength astronomical dataset will soon
exist. To derive the maximum scientific benefit from this vast resource of
fundamental data and the recently proposed National Virtual Observa-
tory will require efficient access, such as federated databases that stretch
across several databases at physically different locations, and new soft-
ware techniques and tools, often referred to as “data mining”, for the
analysis of large databases.

Astronomical databases, however, pose unique problems and chal-
lenges due not only to their very large size, but also to the variable
quality of the data and the uncertainty of measurement over the entire
electromagnetic spectrum, and to the nature of astronomical objects
with their very wide dynamic range in apparent luminosity and in ap-
parent size (angular diameter). Astronomical databases will not only
possess an unprecedented number of objects, but the astronomical ob-
jects themselves may also have a large number of attributes leading to
a very high dimensional dataset.

Many of the necessary techiques and software packages, including arti-
ficial intelligence techniques, like neural networks and decision trees have
already been successfully applied to astronomical problems such as pat-
tern recognition and object classification, while new clustering and data
association algorithms that may have application to large astronomical
databases are being developed by computer science groups. However,
these new software packages are often developed and tested on idealized
or “clean” datasets that lack the “real noise” and uncertainty of mea-
surement encountered particularly in large astronomical databases. The
APS Catalog of the POSS I is an excellent resource for perfecting and
testing these data mining techniques.

1. THE APS PROJECT

The Automated Plate Scanner(APS) Catalog of the POSS I is an
on-line database of fundamental data and parameters for over 100 mil-
lion stars and galaxies derived from our digitized scans of glass copies
of the blue and red plates of the original, first epoch Palomar Obser-
vatory Sky Survey (POSS I). It is large enough, 25 GB, to present a
realistic challenge for testing “data mining” algorithms on a range of as-
trophysical applications. Its scientific usefulness and validity have been
demonstrated by numerous studies by members of the APS group and
by our users.
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The Catalog contains coordinates, magnitudes, colors, and several
other computed image parameters for all of the matched images on the
blue and red plates. It provides information for the individual stars
and galaxies down to fainter than 21st magnitude (in the blue). The
calculation of accurate image parameters and the reliable separation of
stellar and non-stellar images (galaxies) has long been a focus of our
work with the APS data We were the first group to successfully apply
AI techniques, specifically neural networks, to the image classification
problem (see Odewahn et al. 1992. Odewahn et al. 1993, Odewahn
1995) Our neural network image classifier has been trained to the faint
limit of the photograhpic plates and gives a success rate better than
90% to within one magnitude of the plate limit. It uses various image
parameters with a back-propagation algorithm and two hidden layers to
generate an output layer with two nodes, star or non–star(= galaxy).
This “node gal” value ranging from 0 to 1 also provides a confidence
level of the classification and is cataloged with the image type.

The completed catalog of objects is available as an on-line database
over the Internet (URL is http://aps.umn.edu). Querying is achieved
with a custom-designed database management system called StarBase
capable of handling millions of entries. StraBase was developed in collab-
oration with faculty and students of the University of Minnesota Com-
puter Science Department. It uses specialized hashing on each image
parameter derived for every catalog entry, including a two-dimensional
hierarchical algorithm for positional search and retrieval. This level of
optimization provides us with a DBMS that is faster and smaller than a
commercial equivalent. A complementary image database is also avail-
able and includes all of the matched images in the object catalog as well
as the unmatched images above the noise threshold on both the blue
and red plates.

We have recently installed a federated database (FDBS) called Myriad
(Lim et al. 1995) developed by Professor Jaideep Srivastava’s group in
our Computer Science Dept. The FDBS integrates the APS catalog and
image database so that they appear as one easy-to-use resource. With
a FDBS, the queries and transactions on the integrated database are
performed as if it were a single database. The separate DBMS’s are
hidden from view by a flexible interface. It is important to emphasize
that the FDBS permits horizontal access to the data, not just vertical.
Queries can be made not only by sky position, but also by any parameter
in either database.

Although we have had considerable success with our neural network-
based object classifier for our research applications, for many astrophys-
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ical problems the actual morphological type of the galaxy is very impor-
tant, especially for studies of galaxy formation and evolution and large-
scale structure in the universe. Working with members of our Computer
Science Department, we have recently had some success applying data
mining and pattern recognition codes to identifying the most useful pa-
rameters for automating the classification of the galaxy images by their
morphological types.

2. THE MORPHOLOGICAL

CLASSIFICATION OF GALAXIES

Ever since the discovery of galaxies, it has been known that these
assemblies of stars, dust and gas have different morphological shapes.
In 1936, Edwin Hubble established a system to classify galaxies into
three fundamental types. Elliptical galaxies had an elliptical shape with
no other discernible structure. Spiral galaxies had an elliptical nucleus
surrounded by a flattened disk of stars and dust containing a spiral pat-
tern of brighter stars. The irregular galaxies as their name suggests,
were irregularly shaped and did not fit into the other two categories. As
more galaxies were observed, it became apparent that the galaxy types
formed a continuous sequence starting from nearly spherical galaxies to-
ward more flattened ellipticals, through the lenticulars, galaxies with a
large nucleus and small disk with no spiral structure, to the true spirals
starting with tightly wound spiral arms and proceeding to less tightly
wound arms and concluding with the irregulars. In other words, Hub-
ble arranged galaxies in order of increasing complexity. Although many
subdivisions and refinements have been made within the Hubble classifi-
cation system, we are primarily concerned here with identifying the four
basic types of galaxies: ellipticals, lenticulars, spirals, and irregulars.

The classification of galaxies is typically performed by visual inspec-
tion of photographic plates. This is by no means an easy task, requiring
a great deal of practice and time on the part of the classifier. Large
catalogs of galaxies containing a few tens of thousands of galaxies [e.g.
the Third Reference Catalogue of Bright Galaxies (de Vaucouleur et al.

1991)] take years to compile. With today’s large all–sky surveys, gen-
erating millions of galaxy images, human classification is no longer a
viable option. Furthermore, although the types are well defined, human
classifications tend to be subjective and it is difficult for independent
researchers to reproduce results. Often it is very difficult to distinguish
between adjacent types. For instance, a lenticular galaxy viewed face-
on, looking down at the disk, looks very similar to an elliptical and
all morphological catalogs have fewer face-on lenticulars than edge-on,
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where the presence of a disk is more readily discerned. Studies also
show that morphological catalogs of galaxies produced by even the best
human classifiers disagree with other classifiers between 10% and 20%
of the time. Therefore, in order to produce the large, objective, re-
producible, morphological catalogs necessary for galaxy formation and
evolution studies computer generated classifications are required.

There have been a few recent attempts to create an automated clas-
sification system, generally using artificial neural networks (Odewahn
1995, Naim et. al. 1995). While limited success has been achieved, these
computer-based classifiers have yet to produce large, unbiased morpho-
logical galaxy catalogs. The reason for this seems to be that while it
has been possible to train a neural network to correctly classify a well
defined, hand picked, set of galaxies, when applied to the large random
samples of galaxy images upon which any classifier must ultimately be
applied, they fail to give results that can equal human classifications.

In our attempts to solve this problem we have visually classified some
1500 galaxies images obtained from the APS database in the region of
the north galactic pole. Although this training set was chosen based
solely on the brightness and size of galaxy images on 9 photographic
plates, it is important to note that galaxies which were hard to classify
(less than 1 %) were removed from this sample. The first problem is
to identify a set of parameters which can separate the galaxies by their
types. This has turned out to be quite challenging. The human eye
can easily recognize complicated patterns in images such as spiral arms
which tend to be spotty, blochy affairs that are difficult for automated
techniquesi. Often it is necessary to rely on secondary effects such as
color (spiral galaxies tend to be bluer than ellipticals) which are not
specifically part of the classification system as originally conceived. If
a picture is worth a thousand words, with a little imagination a galaxy
image can be described by hundreds of parameters, all of which may
have some relation to the morphological type. Currently, we calculate
over five hundred such parameters for each galaxy in the APS database.
Unfortunately, we cannot simply present all of these parameters to a
neural network and let the training algorithm determine which are the
most important. We would merely end up with a network that has mem-
orized the training sample perfectly, but performs poorly on samples not
seen during training. In order to have a reasonable chance of spanning
a five hundred dimensional parameter space we would require a training
sample of many millions: the thing we are trying to avoid.

With drastic increases in training set size ruled out for practical rea-
sons, another option is to limit the number of parameters presented to
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a neural network. The question is, which parameters to choose? If one
or two parameters yielded adequate separation, we could merely plot
all the parameters in turn and see which provided the greatest distance
between the clumps defining the various types. Unfortunately, this is
not the case. While several parameters show trends with galaxy type,
no combination of two or three parameters is capable of solving the
problem.

The problem of finding clusters in large dimensional spaces however,
falls within the sphere of data mining. Working with the data mining
group at the University of Minnesota, we applied the program Mineset
to the task. This program allows quick evaluation and ranking of the
parameters, as well as creating a decision tree classifier. Using the 10
best parameters we have been able to achieve a classifier with an 85%
accuracy treating the Ellipticals and the lenticulars as a single class.
While this is still short of our goal of creating a classifier as good as the
human classifiers, it is a step in the right direction. In order to improve
our classifier we continue to seek parameters that can provide better sep-
aration between the morphological types. However, it is possible that
our 500 parameters already have enough information to correctly clas-
sify galaxies and by limiting the number to only ten we are ignoring
useful information. At the same time, examination of the misclassified
galaxies often reveals an anomaly in the image which confuses the com-
puter classifier. Examples include forground stars or faint background
galaxies within the galaxy image, or the presence of dust lanes in an oth-
erwise structureless Elliptical galaxy. While a human classifier routinely
discounts these deviations, automated classifiers see only the parame-
ters presented to them. A possible solution is to train a large number
of neural networks, each of which is presented a small number of the
parameters. The final classification is then taken to be a weighted av-
erage of all the classifiers output. This procedure allows a more robust
classification to be performed as one or two deviant parameters can be
out-weighed by the vast majority of normal parameters for that galaxy
type.

3. TESTING CLUSTERING ALGORITHMS

ON AN ASTRONOMICAL DATABSE

To a computer scientist, “clustering” is a discovery process (Stone-
braker et al. 1993, Chen et al. 1996) that groups objects such that the
similarity between objects in the same group is maximized and the sim-
ilarity between objects in different groups is minimized (Jain and Dubes
1988, Kaufman and Rousseeuw 1990, Chen et al. 1996). In astron-
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omy, we often group objects into “populations” with distinct properties.
There is obviously a large overlap between what an astronomer would
call a “population” and what a computer scientist would call a “cluster.”
In this section we will concentrate on explaining how new clustering al-
gorithms can be applied to existing (and future) astronomical databases
to allow for automated identification of astronomical populations.

There are many different types of astronomical populations. If the
properties distinguishing the populations are spatial (positions on the
sky or in space), the populations identified may be real physical “clus-
ters” of objects. For example, it has been well established that galaxies
tend to lie near other galaxies, in “galaxy clusters.” Spatial clusters
are one very common form of population in astronomy. However, in
addition to these spatial clusters, populations with similar physical and
image parameters may exist both within the spatial clusters and inde-
pendent of them. An example of a non-spatial population is the famous
Hertzsprung-Russell diagram, a plot of color versus absolute brightness
for stars. Stars tend to lie in relatively restricted regions of this parame-
ter space. The stars in this diagram can therefore be classified into sepa-
rate populations, including Main Sequence stars, Giants, White Dwarfs,
etc. These stellar populations have other properties, outside of color
and absolute brightness, that distinguish them, indicating they are in-
deed physically distinct types of stars. If we treat spatial, physical, and
image parameters as part of a multivariate description of each object in
an astronomical database, we can see that astronomical populations are
just what a computer scientist would call a “cluster.”

Traditionally the identification of astronomical populations has been
done “by eye” through examination of parameter space plots. Recently,
astronomers have started using computers to identify some populations
in astronomical databases, usually by looking for populations they ex-
pect to exist. The promise of applying clustering algorithms to astro-
nomical databases lies in the application of precisely defined criteria in
identifying populations, criteria that are not subject to psychological or
physiological biases. Developing clustering algorithms for astronomical
datasets poses a number of challenges due to both the characteristics
of the data discussed as well as the types of the desired clusters. The
clusters may be of variable sizes and densities, and of arbitrary shapes.
We need to develop clustering algorithms that are capable of accommo-
dating different clustering objectives.

For spatial clustering, a new class of hierarchical agglomerative clus-
tering algorithms are useful in identifying clusters with varying, non-
uniform densities and arbitrary shapes. These algorithms use a dynamic-
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modeling approach to measure the similarity between two clusters; thus
allowing them to automatically adjust to the characteristics of each clus-
ter. Two clusters are merged only when the distinctiveness of parameter
values between the clusters is comparable to the internal scatter of the
parameter values within each cluster. These algorithms forego the defi-
nition of a user-specified model (and the biases possible in such models),
instead automatically adjusting the parameters distinguishing clusters
from one another. Therefore, these algorithms are suitable for identifi-
cation of spatial clusters of stars and galaxies, since they can identify
clusters with homogeneous internal parameters even if the clusters vary
in density, shape, or size.

An example of such a clustering algorithm is Chameleon (Karypis et

al. 1999). Chameleon operates on a sparse graph where nodes represent
objects and weighted edges represent the similarities between objects.
This sparse graph representation allows Chameleon to scale to the large
data sets becoming common in astronomy. Initial investigations with
Chameleon show that it is able to correctly identify clusters of vary-
ing size, orientation, shape. In addition to this strength, Chameleon is
tolerant of noise and outliers, something common to all astronomical
datasets. It is our goal to apply Chameleon to a subset of the APS
catalog, a catalog of over 200,000 galaxies in the region surrounding the
North Galactic Pole, called the MAPS-NGP. Using Chameleon on the
MAPS-NGP, we hope to identify not only previously recognized galaxy
clusters (Abell 1958) but new ones as well. The challenge when apply-
ing such an algorithm to astronomical datasets is that every object will
usually have a great variety of parameters describing it, thus essentially,
instead of a sparse graph, we have a dense graph.

Another approach to the problem of identifying astronomical popu-
lations is unsupervised clustering. Unsupervised clustering can be used
to discover structure within a large dataset as well as grouping simi-
lar objects together independent of any user-defined classes. Once such
structuring of the data is preformed, further exploration of the data set
is made easier, since analyses that would normally have been applied to
the entire data set can now be applied to hierarchically structured sub-
sets. One unsupervised clustering algorithm is the Principal Direction
Divisive Partitioning (PDDP) algorithm, which has been demonstrated
to be a fast method of constructing a hierarchical clustering tree top-
down (Boley 1998, Chen et al. 1996). PDDP is fast and scalable to very
large datasets, producing data structures that identify the attributes
distinguishing one cluster from another, in a completely unsupervised
way. Initial application of the PDDP algorithm to the MAPS-NGP
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should provide a way of identifying distinct populations of objects, with
information on just what makes them distinct.

We have found that the problems with existing data mining tech-
niques when applied to astronomical datasets are largely tied to the vast
size of modern astronomical datasets plus the density of records. Often,
records for an individual astronomical object will contain dozens of fields
(each with a value). And in modern, multi-wavelength astronomy, cross-
identification of the same object in separate databases is a common tech-
nique (see, Cabanela and Dickey 2001 for an example of cross-identified
radio and optical data used to identify a subset population of low surface
brightness galaxies from the general galaxy population). Data mining
techniques will be required to handle hundreds of fields associated with
each record, with the values of items in those fields retrieved through
integrated and efficient access to multiple, distributed, databases around
the world. When data mining techniques meet this challenge, the pro-
cess of astronomical discovery should accelerate tremendously, and the
astronomer’s efforts will be able to focus on interpreting the relation-
ships for astronomical populations (maybe we’ll use the term “cluster”
by then) instead of searching for them.
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